
Constrained Nonlinear Optimization with

EASY-OPTExpress

- User’s Guide Version 1.0, 2009 -

Prof. K. Schittkowski
Department of Computer Science

University of Bayreuth

EASY-OPTExpress is an interactive software system to solve nonlinear constrained
optimization problems, i.e., to minimize an objective function subject to equality or
inequality constraints. The underlying numerical algorithm is an implementation of
a sequential quadratic programming method, i.e., the code NLPQLP of the author
[13, 19]. Model functions are defined in a modeling language called PCOMP and are
interpreted and evaluated during runtime. It is assumed that all nonlinear functions
are differentiable. Gradients are evaluated automatically. EASY-OPTExpress is
particularly useful for classroom exercises of optimization courses or to become fa-
miliar with optimization routines before starting a real life implementation. The
mathematical theory of the considered algorithm is described briefly and the usage
of the codes is outlined. The user interface is implemented in form of a database un-
der Microsoft Access running under Windows XP or higher. A royalty free runtime
version is included.

1

Important Notes:

1. Trademarks:

Windows, Microsoft are registered trademarks of Microsoft Corp.
INTEL is a trademark of Intel Corporation

2. Copyrights:

EASY-OPTExpress Copyright c©2009, Klaus Schittkowski
GNUPLOT Copyright c©1986-2004, Thomas Williams, Colin Kelley

3. Disclaimer:

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS ’AS IS’ AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDEN-
TAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (IN-
CLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

2

Contents

1 Introduction 4

2 Optimality Criteria 6

3 Sequential Quadratic Programming Algorithms 8

4 The Modeling Language PCOMP 10

5 Program Organization 14

6 The Easy-to-Use Interface 23

3

1 Introduction

We proceed from the following mathematical model which describes a general non-
linear programming problem with constraints,

min f(x)

gj(x) = 0 , j = 1, ..., me

x ∈ IRn : gj(x) ≥ 0 , j = me + 1, ..., m (1)

xl ≤ x ≤ xu

We can imagine, for example, that the objective function is the weight of a
mechanical structure that is to be minimized subject to sizing and shape variables,
and that the constraints impose limitations on structural response quantities, e.g.
upper bounds for stresses or displacements under static loads.

Now we assume that f(x) and g1(x), . . ., gm(x) are continuously differentiable
on the whole IRn. To simplify the subsequent notation, we omit the lower and upper
bounds on the variables in the subsequent sections.

Nonlinear programming algorithms are usually available in form of subroutines.
To adapt a given problem to the code used, model functions and their gradients
must be implemented ’by hand’, and a main program must be written for calling the
optimization routine and for defining all parameters and arrays needed to start the
iterative process. This approach is time-consuming and susceptible to programming
errors at least for unexperienced users.

In this documentation, we describe a program that reads formatted input data
and nonlinear functions in a Fortran-like language, and executes a widely used non-
linear optimization algorithm, the SQP code NLPQLP of the author [19]. Thus, the
program is particularly useful for classroom exercises of optimization courses or to
become familiar with optimization routines before starting a real life implementa-
tion.

In order to understand optimization algorithms, i.e., their underlying structure
and the results achieved, a brief introduction into mathematical programming the-
ory is presented in Section 2. It is sufficient to consider only optimality criteria
which contain all information to analyze a numerical solution. The investigation
of the optimality criteria helps to understand the results, e.g., to learn whether an
achieved answer can be accepted or not or to get an idea on the final accuracy and
the sensitivity of the solution. Moreover, the role of the multipliers is illustrated
which are also computed and displayed together with the optimization variables at
termination.

The basic strategy of any optimization method is to approximate the given non-
linear problem by another problem that can be solved then much easier. The most
efficient strategy leads to successive generation of quadratic programming problems
which must be solved then by standard techniques. The resulting algorithm is called

4

sequential quadratic programming or SQP method and is described in Section 3 in
detail. SQP methods are the most frequently used tools today to solve smooth op-
timization problems, if there are no additional mathematical structures permitting
the usage of special purpose techniques.

The main program which reads all input data, evaluates function and gradi-
ent values, executes the SQP code NLPQLP, and prepares output data, is called
NLPQLADM. To run this program, two input files are required. One contains all
numerical data, e.g., number of variables and constraints, starting point, optimiza-
tion parameters, etc., and another one must contain the problem functions in a
special syntax which is similar to Fortran. This file is parsed and an intermediate
code is produced needed to start the optimization program. Gradients of nonlinear
problem functions are evaluated automatically during run time. A brief outline of
the modeling language PCOMP is presented in Section 4, and a summary of all
possible error messages is listed in an appendix. The organization of NLPQLADM
is described in Section 5.

The easy-to-use interface facilitates the execution of the optimization program
NLPQLADM.EXE. EASY-OPTExpress is a database implemented under Microsoft
Access 2007, and comes with the royalty-free runtime version. A brief outline of the
system is given in Section 6. The usage is described in more detail by an additional
context sensitive help file EASY OPT.HLP.

5

2 Optimality Criteria

It is outside the scope of this paper to present a detailed introduction into the
mathematical theory behind the nonlinear programming problem (1). To get at
least an impression on the basic ideas behind optimization algorithms and to learn
the most important terms, a brief description of the mathematical optimality criteria
is given. We need these criteria to understand the optimization algorithms and to
be able to analyze their results.

First we have to specify the notation used in this paper. We denote by

∇f(x) := (
∂

∂x1
f(x), . . . ,

∂

∂xn
f(x))T

the gradient of a differentiable function f(x) for x ∈ IRn. In case of doubts, we
add the index x to ∇ to indicate that the differentiation is to be performed only
with respect to the x-variables. Moreover, we write the Hessian matrix of a twice
differentiable function f(x) with respect to x ∈ IRn in the form

∇2f(x) :=

(
∂2

∂xi∂xj

f(x)

)

Again an index x may insure that we consider only the differentiation with respect
to x.

Next we define by

I(x) := {j : gj(x) = 0, me < j ≤ m}

the set of active constraints for any feasible x, i.e., any x that satisfies all restrictions.
The most important tool to understand the optimality criteria, is the so-called

Lagrange function

L(x, u) := f(x) −
m∑

j=1

ujgj(x)

which is defined for x ∈ IRn and u = (u1, . . . , um)T , and which describes a linear
combination of the objective function and the constraints. The coefficients uj, j =
1, . . . , m, are called the Lagrange multipliers of (1).

Now we are able to formulate optimality criteria. Since the required assumptions
differ, we distinguish as usual between necessary and sufficient conditions. In the
first case, we need an assumption called constrained qualification, which means that
for a feasible x, the gradients of active constraints, i.e., the set {∇gj(x) : j ∈ I(x)},
are linearly independent.

Theorem: Let f and gj for j = 1, .., m be twice continuously differentiable func-
tions, x� be a local minimizer of (1) and the constrained qualification be satisfied in

6

x�. Then there is a u� ∈ IRm so that the following conditions are satisfied:

a) u�
j ≥ 0 for j = me + 1, . . . , m,

∇xL(x�, u�) = 0,

u�
jgj(x

�) = 0 for j = me + 1, . . . , m,

b) sT∇2
xL(x�, u�)s ≥ 0 for all s ∈ IRn with ∇gj(x

�)T s = 0,

j ∈ {1, . . . , me} ∪ I(x�)

It is possible to prove the opposite direction without the regularity condition
constraint qualification subject to some stronger statement, i.e., a strict local mini-
mizer.

Theorem: Let f and gj for j = 1, .., m be twice continuously differentiable func-
tions, x� ∈ IRn be feasible with respect to (1) and u� ∈ IRn a multiplier vector
with

a) u�
j ≥ 0 for j = me + 1, . . . , m,

∇xL(x�, u�) = 0,

u�
jgj(x

�) = 0 for j = me + 1, . . . , m,

b) sT∇2
xL(x�, u�)s > 0 for all s ∈ IRn, s �= 0, with ∇gj(x

�)T s = 0,

j ∈ {1, . . . , me} and j = me + 1, . . . , m with u�
j > 0.

Then x� is an isolated local minimizer of f , i.e., there is a neighborhood U(x�) of
x�, so that f(x�) < f(x) for all x ∈ U(x�), x �= x�.

The condition, that the gradient of the Lagrange function vanishes at an op-
timal solution, is called the Karush-Kuhn-Tucker condition of KKT condition of
(1). In other words, the gradient of f is a linear combination of gradients of active
constraints,

∇f(x�) =
∑

j∈I(x�)

u�
j∇gj(x

�)

The complementary slackness condition u�
jgj(x

�) = 0 together with the feasibility
of x� guarantees, that only the active constraints, i.e., the interesting ones, contribute
a gradient in the above sum. Either a constraint is satisfied by equality or the
corresponding multiplier value is zero.

The Karush-Kuhn-Tucker condition can be computed within an optimization
algorithm, if suitable multiplier estimates are available, and serves as a stopping
condition. However, the second order condition b) can only be evaluated numeri-
cally, if second derivatives are available. The condition is required in the optimality
criteria, to be able to distinguish between a stationary point and a local minimizer.

Proofs of the theorems are found in any textbook on nonlinear programming,
e.g. in Gill, Murray and Wright [4] or Spellucci [20]. An elementary outline of the
optimality conditions and a geometric interpretation is found in Papalambros and
Wilde [8].

7

3 Sequential Quadratic Programming Algorithms

The sequential quadratic programming or SQP method is the standard general pur-
pose tool for solving smooth nonlinear optimization problems under the following
assumptions:

• The problem is not too big.

• The functions and gradients can be evaluated with sufficiently high precision.

• The problem is smooth and well-scaled.

The mathematical convergence and the numerical performance properties of SQP
methods are very well understood now and are published in so many papers, that
only a few can be mentioned here. Theoretical convergence is investigated in Han [5,
6], Powell [9, 10], Schittkowski [12], e.g., and the numerical comparative studies
of Schittkowski [11] and Hock, Schittkowski [7] show their superiority over other
mathematical programming algorithms under the above assumptions.

The key idea is to approximate also second order information to get a fast final
convergence speed. Thus we define a quadratic approximation of the Lagrange
function L(x, u) and an approximation of the Hessian matrix ∇2

xL(xk, uk) by a so-
called quasi-Newton matrix Bk. Then we get the subproblem

min 1
2
dTBkd+ ∇f(xk)

Td

d ∈ IRn : ∇gj(xk)
Td+ gj(xk) = 0 , j = 1, . . . , me (2)

∇gj(xk)
Td+ gj(xk) ≥ 0 , j = me + 1, . . . , m

To stabilize the algorithm particularly when starting from a poor initial guess x0,
and to ensure convergence, an additional line search is performed, i.e. a steplength
computation to accept a new iterate xk+1 := xk + αkdk for an αk ∈ (0, 1] only if
xk+1 satisfies a descent property with respect to a solution dk of (2). Following
the approach of Schittkowski [12], e.g., we need also a simultaneous line search with
respect to the multiplier approximations called vk and define vk+1 := vk+αk(uk−vk)
where uk denotes the optimal Lagrange multiplier of the quadratic programming
subproblem (2).

The line search is performed with respect to a merit function

ψk(α) := φrk
(xk + αdk, vk + α(uk − vk))

and

φr(x, v) := f(x) −∑me
j=1(vjgj(x) − 1

2
rjgj(x)

2)

−∑m
j=me+1

{
(vjgj(x) − 1

2
rjgj(x)

2), if gj(x) ≤ vj/rj
1
2
v2

j/rj , otherwise

8

where r = (r1, . . . , rm)T . We should note here that also other concepts, i.e. other
merit functions are found in the literature. We initiate a subiteration starting with
α = 1 and perform a successive reduction combined with a quadratic interpolation
of ψk(α), until for the first time, a the stopping condition of the form

ψk(α) ≤ ψk(0) + μαψ′
k(0)

is satisfied, where we must be sure that ψ′
k(0) < 0, of course. To guarantee this

condition, the penalty parameter rk must be evaluated by a special formula, see
Schittkowski [12].

The update of the matrix Bk can be performed by standard techniques known
from unconstrained optimization. In most cases, the BFGS-method is applied, a
numerically simple rank-2 correction starting from the identity or any other pos-
itive definite matrix. Only the difference vectors xk+1 − xk and ∇xL(xk+1, uk) −
∇xL(xk, uk) are required. Under some safeguards it is possible to guarantee that all
matrices Bk are positive definite.

Among the most attractive features of SQP methods is the superlinear conver-
gence speed in the neighborhood of a solution given by

‖ xk+1 − x∗ ‖≤ γk ‖ xk − x∗ ‖

where γk is a sequence of positive numbers converging to zero and x∗ an optimal
solution.

To understand this convergence behavior, replace Bk by the true Hessian of
the Lagrangian function and consider only equality constraints. Then it is very
easy to see that an SQP method is nothing else than Newton’s method for solving
the nonlinear system of n + m equations in n + m unknowns given by the KKT
conditions. This result can be extended to inequality constraints as well. Then we
get immediately the quadratic convergence behavior and, if we replace Bk again
by its approximation, the weaker superlinear convergence rate as proved in the
references mentioned above.

9

4 The Modeling Language PCOMP

The symbolic input of nonlinear functions was developed for a package of automatic
differentiation routines called PCOMP, see Dobmann, Liepelt and Schittkowski [2].
Basically, the language is a subset of Fortran with a few extensions. In particular the
declaration and executable statements must satisfy the usual Fortran input format,
i.e. must start at the 7th position or later. Comments beginning with ’C’ at the
first column, may be included in a program text whenever needed. Statements may
be continued on subsequent lines by a continuation mark in the 6th column. Either
capital or small letters are allowed.

In contrast to Fortran, however, most variables are declared implicitly by their
assignment statements. Only those variables and functions must be declared sepa-
rately, which are used for automatic differentiation. PCOMP possesses six special
constructs to identify program blocks.

* SET OF INDICES
Definition of index sets that can be used to declare data, variables and func-
tions or to define SUM - or PROD - statements.

* REAL CONSTANT
Definition of real data, either without index or with one- or two-dimensional
index.

* INTEGER CONSTANT
Definition of integer data, either without index or with one- or two-dimensional
index.

* TABLE
Definition of real data in form of spreadsheet, i.e., for given indices of one or
two-dimensional array specified, the corresponding data are to be listed row
by row.

* VARIABLE
Declaration of variables either with or without index, with respect to which
automatic differentiation is to be performed.

* FUNCTION 〈 identifier 〉
Declaration of functions either with or without index, for which function and
gradient values are to be evaluated. The subsequent statements must address
a numerical value to the function identifiers.

* END
End of the program.

10

The order of the above program blocks is obligatory, but they may be repeated
whenever desirable. The END-statement must be the final command. The state-
ments within the program blocks are very similar to usual Fortran notation and
must satisfy the following guidelines:

Constant data: For defining real numbers either in analytical expressions or within
the special constant data definition block, the usual Fortran convention can
be used. In particular the F -, E- or D-format is allowed.

Identifier names: Names of identifiers, e.g., variables and functions, index sets
and constant data have to follow the Fortran syntax rules. Up to six alpha-
numerical characters are allowed.

Index sets: Index sets are required for the SUM- and PROD-expressions and for
defining indexed data, variables and functions. They can be defined in two
alternative ways:

1. Range of indices, e.g.
IND1 = 1..27

2. Set of indices, e.g.
IND2 = 3, 1, 17, 27, 20

3. Computed index sets, e.g.

IND3 = 5 ∗ I + 100, I in IND1

Assignment statements: As in Fortran, assignment statements are used to ad-
dress a numerical value to an identifier, which may be either the name of the
nonlinear function that is to be defined, of of an auxiliary variable that is used
in subsequent expressions, e.g.,

R1 = X1 ∗X4 +X2 ∗X4 +X3 ∗X2 − 11

R2 = X1 + 10 ∗X2 −X3 +X4 +X2 ∗X4 ∗ (X3 −X1)

F = R1 ∗ ∗2 +R2 ∗ ∗2

Analytical expressions: An analytical expression is, as in Fortran, any allowed
combination of constant data, identifiers, elementary or intrinsic arithmetic
operations and the special SUM- and PROD-statements. Elementary opera-
tions are

+ , − , ∗ , / , ∗∗

and the allowed intrinsic functions are

11

SIN , COS , TAN , ASIN , ACOS , ATAN ,

SINH , COSH , TANH , ASINH , ACOSH , ATANH ,

ABS , EXP , LOG , LOG10 , SQRT

Alternatively, the corresponding double precision Fortran names for intrinsic
functions possessing an initial ’D’ can be used as well. Brackets are allowed
to combine groups of operations. Possible expressions are e.g.

5 ∗DEXP (−Z(I))

or
LOG(1 + SQRT (C1 ∗ F1) ∗ ∗2)

SUM - and PROD-expressions: Sums and products over predetermined index sets
are formulated by SUM- and PROD-expressions, where the corresponding in-
dex and the index set must be specified, e.g. in the form

F = 100 ∗ PROD(X(I) ∗ ∗A(I), I in INDA)

In the above example, X(I) might be a variable vector defined by an index
set, and A(I) an array of constant data.

Control statements: To control the execution of a program, the conditional state-
ments

IF 〈condition〉 THEN
〈statements〉
ENDIF

or

IF 〈condition〉 THEN
〈statements〉
ELSE

〈statements〉
ENDIF

can be inserted into a program. Conditions are defined as in Fortran by the
comparative operators EQ, NE, LE, LT , GE, GT , which can be combined
using brackets and the logical operators AND, OR and NOT , e.g.

Y 1 = (X3 −X2) ∗ (X5 −X2) ∗ (X6 −X2)

IF ((Y 1.LT.EPS) .AND. (Y 1.GT.−EPS)) THEN

Y 1 = EPS

ENDIF

12

Whenever indices are used within arithmetic expressions, it is possible to insert
polynomial expressions of indices from a given set. However functions must be
treated in a particular way. Because of the internal structure of the reverse algorithm
and the design goal to generate short, efficient Fortran codes, indexed function names
can be used only in exactly the same way as defined. In other words, if a set of
functions is declared, e.g., by

∗ FUNCTION F (I), I IN INDEX

then only accesses to F (I) are allowed, not to F (1) or F (J), for example. For a
very similar reason it is not allowed to have any variable names on the left and right
hand side of an arithmetic expression at the same time and PCOMP will report an
error message in this case. Thus a statement like

S = S + 2 ∗X1

is forbidden.
On the other hand it is allowed to pass variable values from one function block

to the other. However the user must be aware of a possible failure if in the calling
program, the evaluation of a gradient value is not required for a function, for which
a certain variable is defined that is used also in subsequent blocks. It should be
noted that DO-expressions are not allowed, also subroutine calls are forbidden.

However one should be very careful when using the conditional statement IF .
Possible traps that prevent a correct differentiation are reported in Fischer [3], and
are to be illustrated by an example. Consider the function f(x) = x2 for n = 1. A
syntactically correct formulation would be:

IF X = 1 THEN

F = 1

ELSE

F = X ∗ ∗2
ENDIF

In this case PCOMP would try to differentiate both branches of the conditional
statement. If X is equal to 1, the derivative value of F is zero, otherwise equal to
2 ∗X. Obviously we get a wrong answer for X = 1. This is a basic drawback for all
automatic differentiation algorithms of the type we are considering.

Examples in form of complete PCOMP-programs are listed in reference Dob-
mann, Liepelt and Schittkowski [2] and in the subsequent sections in form of non-
linear programming test cases.

13

5 Program Organization

The nonlinear programming problem is solved by the code NLPQLP, see Schitt-
kowski [13, 19], which has been extended over a period of 30 years, e.g. to run
under a distributed system or to allow uphill search directions. If desired by the
user, the output of NLPQL is directed to a file named 〈name〉.OUT.

To run NLPQLADM.EXE as a stand-alone code, one has to provide two input
files with the names NLPQLADM.DAT and 〈name〉.FUN, where 〈name〉 denotes
any name to identify the optimization problem to be solved. The file with ex-
tension .FUN contains the formulation of the problem functions in a Fortran-like
language which was developed for the automatic differentiation code PCOMP, see
Dobmann, Liepelt and Schittkowski [2] or the previous section. These two files
are created automatically by the user interface of EASY-OPTExpress and the code
NLPQLADM.EXE is started from the interface.

The first file with extension DAT contains problem parameters, data, solution
tolerances, initial variable values etc., which are necessary to start the optimization
algorithm. The input format is described subsequently in more detail. It is impor-
tant here to note that the user must follow the input guidelines very carefully. It is
e.g. not allowed to omit or interchange lines or column positions. For an experienced
user it should be possible to integrate the software into his own environment related
to the domain of application, and to generate this input file by his own software.

The interactive user interface coming with EASY-OPTExpress facilitates the
usage of NLPQLADM. Input of data is required in form of windows and masks,
and the system generates the input files for the numerical algorithms automatically.
After termination of on optimization run, results are read and stored in the database.

The two input files with extensions FUN and DAT must fit together. The fol-
lowing rules apply:

• Variable names are declared within the variable block of the model declaration
file with extension FUN. The numbers of variables on this file must coincide
with the number of variables, n, defined in the file NLPQLADM.DAT.

• The number of nonlinear constraints m must also coincide on both files. First
the objective function, then the me equality constraints, if available, and sub-
sequently the m−me inequality constraints must be defined in 〈name〉.FUN,
either individually or by index sets.

• Any other functions are not allowed to be defined.

• Index sets and constant data can be defined in addition, if required for defining
model functions.

Several output files are generated by the optimization programs. They serve to
adapt the codes to a special environment, e.g. the interactive user interface EASY-
OPT. Some of them are optional.

14

1. 〈name〉.RES: Numerical results, e.g. optimal variable and function values.
The format depends on the system executed, and is described later.

2. 〈name〉.OHF: Function values for displaying optimization history, i.e., iteration
numbers and objective function values in two columns.

3. 〈name〉.OHR: Constraint violation values for displaying optimization history,
i.e., iteration numbers and constraint violations in two columns.

4. 〈name〉.OUT: Optional output channel of the SQP code NLPQLP, not sup-
ported by the GUI of EASY-OPTExpress .

Data input on file NLPQLADM.DAT:

Line Format Name Description

1 A80 Path to the model function file 〈name〉.FUN, but
without extension FUN, for retrieving equations
and for creating output on files with different ex-
tensions.

2 10X,A60 INFO Arbitrary information string.

4 10X,I5 ISCRN Display of optimization output on screen
(ISCRN>0) or on a file with name 〈name〉.OUT
(ISCRN=0).

3 10X,G20.10 ACCQP Accuracy for solving the quadratic programming
subproblem, e.g., 1.E-14.

5 10X,G20.10 ACC Desired final accuracy, e.g. 1.E-7.

6 10X,I5 MAXIT Maximum number of iterations.

7 10X,I5 MAXFUN Maximum number of function calls in the line
search subalgorithm, e.g. 20.

8 10X,I5 IPRINT Specification of the desired output level.

IPRINT=0: No output of the program.

IPRINT=1: Only a final convergence analysis is given.

IPRINT=2: One line of intermediate results is printed in each
iteration.

IPRINT=3: More detailed information is printed in each itera-
tion step, e.g. variable, constraint and multiplier
values.

15

Line Format Name Description

9 10X,I5 N Number of variables. N must be greater than 1 and
not greater than 200.

10 10X,I5 M Number of equality and inequality constraints
without bounds, not greater than 1,000.

11 10X,I5 ME Number of equality constraints, not greater than
M.

......... Repeat lines 12 to 14 for i=1, . . ., N:

12 10X,G20.10 X(I) Input of i-th coefficient of initial variable value x0.

13 10X,G20.10 XL(I) Input of i-th coefficient of lower bound xl. XL(I)
must not be greater than X(I).

14 10X,G29.15 XU(I) Input of i-th coefficient of upper bound xu. XU(I)
must not be smaller than X(I).

16

Output of results on file 〈name〉.RES:

Format Name Description

1X,4I10 IFAIL Termination code according to the following list:

IFAIL=0: The optimality conditions are satisfied.

IFAIL=1: The algorithm has been stopped after MAXIT iterations.

IFAIL=2: The algorithm computed an uphill search direction.

IFAIL=3: Underflow occurred when determining a new approxima-
tion matrix for the Hessian of the Lagrangian function.

IFAIL=4: More than MAXFUN function evaluations are required
during the line search algorithm.

IFAIL=5: Length of a working array is too short. More detailed
error information is obtained with IPRINT > 0.

IFAIL=6: There are false dimensions, i.e. M > MMAX, N ≥
NMAX, or MNN2 �= M+N+N+2.

IFAIL=7: The search direction is close to zero, but the current it-
erate is still infeasible.

IFAIL>10: The solution of the quadratic or least squares subproblem
has been terminated with an error message IFQL > 0 and
IFAIL is set to IFAIL=IFQL+10.

NFUNC Number of function evaluations.

NGRAD Number of gradient evaluations.

NQUSUB Number of solutions of the quadratic programming sub-
problem.

For I=1, . . ., N:

1X,D19.8 X(I) I-th final variable value.

1X,D19.8 U(I) Corresponding multiplier value with respect to an active
upper or lower bound. If no bounds are active, the value
is zero.

1X,D19.8 F Objective function value.

For J=1,. . .,M:

1X,D19.8 G(J) J-th final constraint value.

1X,D19.8 U(J) Corresponding multiplier value.

1X,D19.8 CONVIO Sum of constraint violation.

17

Format Name Description

1X,D19.8 SUMMUL Sum of multiplier values.

Examples:

We want to illustrate the usage of the program NLPQLADM by several examples.
The first problem is test example TP32 of Hock and Schittkowski [7]. We show the
input files and the output file TP32.RES.

min(x1 + 3x2 + x3)
2 + 4(x1 − x2)

2

x1, x2, x3 : 1 − x1 − x2 − x3 = 0

6x2 + 4x3 − x3
1 − 3 ≥ 0

0 ≤ x1, 0 ≤ x2, 0 ≤ x3

First we consider the test example as a nonlinear programming problem without
any special structure, and get the following two input files:

TP32.FUN:

* VARIABLE
X1, X2, X3

C
* FUNCTION F

F = (X1 + 3*X2 + X3)**2 + 4*(X1 - X2)**2
C
* FUNCTION G1

G1 = 1 - X1 - X2 - X3
C
* FUNCTION G2

G2 = 6*X2 + 4*X3 - X1**3 - 3
C
* END

NLPQLADM.DAT:

C:\EASY_OPT\PROBLEMS\TP32
INFO = Test problem TP32 of the Hock-Schittkowski collection
ISCRN = 1
ACCQP = 1.D-14
ACC = 1.D-10
MAXIT = 40
MAXFUN = 8
IPRINT = 2

18

N = 3
M = 2
ME = 1
X1 = 0.1
XL1 = 0.0
XU1 = 1000.0
X2 = 0.7
XL2 = 0.0
XU2 = 1000.0
X3 = 0.2
XL3 = 0.0
XU3 = 1000.0

TP32.RES:

0 3 3 3
.00000000D+00
.00000000D+00
.92444637D-32
.40000000D+01
.10000000D+01
.00000000D+00
.10000000D+01
.00000000D+00
-.20000000D+01
.10000000D+01
.00000000D+00
.00000000D+00
.60000000D+01

Index sets are often useful to define a series of functions or variables. The
subsequent example shows, how they can be used together with the formulation
of sums of functions. The problem is the unconstrained least squares data fitting
problem to minimize

f(x) =
10∑
i=1

(exp(−x1ti) − exp(−x2ti) − x3(exp(−ti) − exp(−10ti)))
2

where ti = 0.1i and where the variables are bounded below by 0 and above by 10,
see test problem TP242 of Schittkowski [14]. Also we want to use the opportunity
to show, how constants can be defined over index sets.

TP242.FUN:

* SET OF INDICES
IND = 1..10

C
* REAL CONSTANT

A = 10

19

T(I) = 0.1*I, I IN IND
Y(I) = EXP(-T(I)) - EXP(-A*T(I)), I IN IND

C
* VARIABLE

X1, X2, X3
C
* FUNCTION F

F = SUM((EXP(-X1*T(I)) - EXP(-X2*T(I)) - X3*Y(I))**2, I IN IND)
C
* END

NLPQLADM.DAT:

C:\EASY_OPT\PROBLEMS\TP242
INFO = Test problem TP242 of the Schittkowski collection
ISCRN = 1
ACCQP = 1.D-14
ACC = 1.D-10
MAXIT = 40
MAXFUN = 20
IPRINT = 2
N = 3
M = 0
ME = 0
X1 = 2.5
XL1 = 0.0
XU1 = 100.0
X2 = 10.0
XL2 = 0.0
XU2 = 100.0
X3 = 10.0
XL3 = 0.0
XU3 = 100.0

The final example shows how constant data can be passed to the function defi-
nition part through the TABLE-command. The problem is test example TP111 of
Hock and Schittkowski [7]:

min
∑10

j=1 exp(xj)(cj + xj − log(
∑10

k=1 exp(xk)))
exp(x1) + 2 exp(x2) + 2 exp(x3) + exp(x6) + exp(x10) − 2 = 0

x ∈ IR10 : exp(x4) + 2 exp(x5) + exp(x6) + exp(x7) − 1 = 0
exp(x3) + exp(x7) + exp(x8) + 2 exp(x9) + exp(x10) − 1 = 0
−100 ≤ xi ≤ 100 , i = 1, . . . , 10

The constant data for cj are give below in the function input file, and are stored
internally when parsing the functions.

TP111.FUN:

20

* SET OF INDICES
IND = 1..10
INDG1 = 1,2,3,6,10
INDG2 = 4,5,6,7
INDG3 = 3,7,8,9,10

C
* TABLE A(I), I IN IND

1 .6089D+01
2 .17164D+02
3 .34054D+02
4 .59140D+01
5 .24721D+02
6 .14986D+02
7 .24100D+02
8 .10708D+02
9 .26662D+02
10 .22179D+02

C
* REAL CONSTANT

B1(I)=0, I IN IND
B1(1)=1.0
B1(2)=2.0
B1(3)=2.0
B1(6)=1.0
B1(10)=1.0

C
B2(I)=0, I IN IND
B2(4)=1.0
B2(5)=2.0
B2(6)=1.0
B2(7)=1.0

C
B3(I)=0, I IN IND
B3(3)=1.0
B3(7)=1.0
B3(8)=1.0
B3(9)=2.0
B3(10)=1.0

C
* VARIABLE

X(I), I IN IND
C
* FUNCTION F

F1 = SUM(A(I)*EXP(X(I)), I IN IND)
F2 = SUM(EXP(X(I)), I IN IND)
F = -F1 + SUM(EXP(X(J))*(X(J) - LOG(F2)), J IN IND)

C
* FUNCTION G1

G1 = -SUM(B1(I)*EXP(X(I)), I IN INDG1) + 2
C
* FUNCTION G2

G2 = -SUM(B2(I)*EXP(X(I)), I IN INDG2) + 1

21

C
* FUNCTION G3

G3 = -SUM(B3(I)*EXP(X(I)), I IN INDG3) + 1
C
* END

22

6 The Easy-to-Use Interface

The easy-to-use interactive system EASY-OPTExpress facilitates the execution of
the optimization program NLPQLADM. The documentation on the mathematical
models, the numerical algorithms, the input format of data, and the syntax of the
language for defining the model functions, can be retrieved also interactively by the
context-sensitive help facility.

The installation of EASY-OPTExpress is described by some separate installation
notes. The database comes with the distribution-free run-time version of Microsoft
Access 2007. Plots are generated by GNUPLOT.

EASY-OPTExpress requires the input of functions in the syntax of the PCOMP
system described in the previous sections. A large number of examples comes with
EASY-OPTExpress taken from the test problem collections [7] and [14].

When defining a model by the input language PCOMP, we have to follow certain
guidelines for the declaration of parameters and functions, since the succession in
which these items are defined, is essential for the interface between the input file
and the executed code. Model functions are defined in the following order:

1. First, the objective function f(x) must be defined where names for the vari-
ables xi, i = 1, . . . , n must be declared in the VARIABLE section.

2. The subsequent me functions are the equality constraints g1(x), . . ., gme(x), if
they exist.

3. Finally, m −me functions for inequality constraints gme+1(x), . . ., gm(x) are
defined.

4. Any other functions are not allowed.

The constants n, me, and m are defined in the data input file and must coincide
with the corresponding number of functions. The order and the number of variables
must coincide with the number of bounds and starting values defined separately. In
addition to variables and functions, a user may insert further real or integer constants
in the function input file according to the guidelines of the PCOMP language.

The maximum number of variables is 200, the maximum number of constraints
1,000. Note that variables and functions may be declared over index sets.

A special option of the output command of EASY-OPTExpress is a display of a
so-called optimization history. Objective function values and the sum of constraint
violations are displayed over the number iterations performed. One iteration is
defined by one evaluation of gradients of objective function and all constraints.

23

’

References

[1] Armijo L. (1966): Minimization of functions having Lipschitz continuous first
partial derivatives, Pacific Journal of Mathematics, Vol. 16, 1–3

[2] Dobmann M., Liepelt M., Schittkowski K. (1995): Algorithm 746: PCOMP:
A Fortran code for automatic differentiation, ACM Transactions on Mathe-
matical Software, Vol. 21, No. 3, 233-266

[3] Fischer H. (1991): Special problems in automatic differentiation, in: Auto-
matic Differentiation of Algorithms: Theory, Implementation and Application,
A. Griewank, G. Corliss eds., SIAM, Philadelphia

[4] Gill P.E., Murray W., Wright M.H. (1981): Practical Optimization, Academic
Press, New York, London

[5] Han S.-P. (1976): Superlinearly convergent variable metric algorithms for gen-
eral nonlinear programming problems Mathematical Programming, Vol. 11,
263-282

[6] Han S.-P. (1977): A globally convergent method for nonlinear programming
Journal of Optimization Theory and Applications, Vol. 22, 297-309

[7] Hock W., Schittkowski K. (1981): Test Examples for Nonlinear Program-
ming Codes, Lecture Notes in Economics and Mathematical Systems, Vol.
187, Springer, Berlin

[8] Papalambros P.Y., Wilde D.J. (1988): Principles of Optimal Design, Cam-
bridge University Press

[9] Powell M.J.D. (1978): A fast algorithm for nonlinearly constraint optimiza-
tion calculations, in: Numerical Analysis, G.A. Watson ed., Lecture Notes in
Mathematics, Vol. 630, Springer, Berlin

[10] Powell M.J.D. (1978): The convergence of variable metric methods for non-
linearly constrained optimization calculations, in: Nonlinear Programming 3,
O.L. Mangasarian, R.R. Meyer, S.M. Robinson eds., Academic Press, New
York, London

[11] Schittkowski K. (1980): Nonlinear Programming Codes, Lecture Notes in Eco-
nomics and Mathematical Systems, Vol. 183 Springer, Berlin

[12] Schittkowski K. (1983): On the convergence of a sequential quadratic program-
ming method with an augmented Lagrangian search direction, Mathematische
Operationsforschung und Statistik, Ser. Optimization, Vol. 14, 197-216

24

[13] Schittkowski K. (1985/86): NLPQL: A Fortran subroutine solving constrained
nonlinear programming problems, Annals of Operations Research, Vol. 5, 485-
500

[14] Schittkowski K. (1987): More Test Examples for Nonlinear Programming, Lec-
ture Notes in Economics and Mathematical Systems, Vol. 182, Springer, Berlin

[15] Schittkowski K. (2002): EASY-FIT: A software system for data fitting in
dynamic systems, Structural and Multidisciplinary Optimization, Vol. 23, No.
2, 153-169

[16] Schittkowski K. (2002): Numerical Data Fitting in Dynamical Systems - A
Practical Introduction with Applications and Software, Kluwer Academic Pub-
lishers, Dordrecht, Boston, London

[17] Schittkowski K. (2003): QL: A Fortran code for convex quadratic programming
- user’s guide, Report, Department of Mathematics, University of Bayreuth,
2003

[18] Schittkowski K. (2004): PCOMP: A modeling language for nonlinear programs
with automatic differentiation, in: Modeling Languages in Mathematical Opti-
mization, J. Kallrath ed., Kluwer, Norwell, MA, 349-367

[19] Schittkowski K. (2007): NLPQLP: A Fortran implementation of a sequen-
tial quadratic programming algorithm with distributed and non-monotone line
search - user’s guide, Report, Department of Computer Science, University of
Bayreuth

[20] Spellucci P. (1993): Numerische Verfahren der nichtlinearen Optimierung,
Birkhäuser, Boston, Basel, Berlin

25

APPENDIX A: Error Messages of the PCOMP-Parser

PCOMP reports error messages in the form of integer values of the variable IERR
and, whenever possible, also line numbers LNUM. The meaning of the messages is
listed in the following table. Note that the corresponding text is displayed if the
error routine SYMERR is called with parameters LNUM and IERR.

In the version implemented for the parameter estimation codes, an error is re-
ported when starting the execution of a numerical algorithm, i.e., when the parser
analyzes the code. The corresponding error code and a line number are displayed
and a user should edit the PCOMP code before trying it again.

Format Name Description
1 - file not found
2 - file too long
3 - identifier expected
4 - multiple definition of identifier
5 - comma expected
6 - left bracket expected
7 - identifier not declared
8 - data types do not fit together
9 - division by zero

10 - constant expected
11 - operator expected
12 - unexpected end of file
13 - range operator ’..’ expected
14 - right bracket ’)’ expected
15 - ’THEN’ expected
16 - ’ELSE’ expected
17 - ’ENDIF’ expected
18 - ’THEN’ without corresponding ’IF’
19 - ’ELSE’ without corresponding ’IF’
20 - ’ENDIF’ without corresponding ’IF’
21 - assignment operator ’=’ expected
22 - wrong format for integer number
23 - wrong format for real number
24 - formula too complicated
25 - error in arithmetic expression
26 - internal compiler error
27 - identifier not valid
28 - unknown type identifier
29 - wrong input sign
30 - stack overflow of parser

26

Format Name Description
31 - syntax error
32 - available memory exceeded
33 - index or index set not allowed
34 - error during dynamic storage allocation
35 - wrong number of indices
36 - wrong number of arguments
43 - number of variables different from declaration
44 - number of functions different from declaration
45 - END - sign not allowed
46 - Fortran code exceeds line
47 - **: domain error
48 - bad input format
49 - length of working array IWA too small
50 - length of working array WA too small
51 - ATANH: domain error
52 - LOG: domain error
53 - SQRT: domain error
54 - ASIN: domain error
55 - ACOS: domain error
56 - ACOSH: domain error
57 - LABEL defined more than once
58 - LABEL not found
59 - wrong index expression
60 - wrong call of the subroutine SYMINP
61 - wrong call of the subroutine SYMPRP
62 - compilation of the source file in GRAD-mode
63 - interpolation values not in right order
64 - not enough space for interpolation functions in subroutine

REVCDE
65 - length of working array IWA in subroutine SYMFOR too

small
66 - not enough interpolation values

27

	Introduction
	Optimality Criteria
	Sequential Quadratic Programming Algorithms
	The Modeling Language PCOMP
	Program Organization
	The Easy-to-Use Interface

