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Summary. The dynamical behavior of a molten carbonate fuel cell (MCFC) can
be modeled by systems of partial differential algebraic equations (PDEAs) based on
physical and chemical laws. Mathematical models for identification and control are
considered as valuable tools to increase the life time of the expensive MCFC power
plants, especially to derive control strategies for avoiding high temperature gradi-
ents and hot spots. We present numerical simulation results for a load change of
a new one-dimensional counterflow MCFC model consisting of 34 nonlinear partial
and ordinary differential algebraic-equations (PDEAs) based on physical and chem-
ical laws. The PDAE system is discretized by the method of lines (MOL) based
on forward, backward, and central difference formulae, and the resulting large sys-
tem of semi-explicit differential-algebraic equations is subsequently integrated by an
implicit DAE solver.

1 Introduction

Molten carbonate fuel cells (MCFCs) are a challenging new technology for
stationary power plants, see e.g. Bischoff and Huppmann [2], Rolf [11], or Win-
kler [19]. They allow internal reforming of a fuel gas, for example methane,
inside the cell with an operating temperature of about 650o C, and have
the advantage of producing clean exhaust gases. The dynamical behavior of
MCFCs can be modeled by one- and two dimensional systems of partial dif-
ferential algebraic equations, see Heidebrecht and Sundmacher [8, 9, 10]. One
of these particular models was recently validated for a real fuel cell operated
at the power plant of the Magdeburg university hospital, see Gundermann,
Heidebrecht, and Sundmacher [5].

The following main assumptions are made to derive the MCFC model
equations, see also Heidebrecht [7]. First, plug flow conditions for the gas phase
in anode and cathode are assumed, where different phases may have different
temperatures and may exchange heat. All solid parts of the cell are lumped
to one phase with respect to enthalpy balance. The temperatures of the two
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gas phases are calculated separately, and the MCFC is operated at nearly
ambient pressure. We do not consider pressure drops across the gas channels,
i.e., isobaric conditions are assumed. All cells in the stack behave alike, so
that the simulation of a single cell is sufficient taking insulation conditions at
boundaries of neighboring cells into account. All chemical substances have the
same heat capacity, which is independent of temperature. Reaction enthalpies
are independent of the temperature. The temperature dependent chemical
equilibrium constants and standard open circuit voltages are approximated
by affine-linear functions. Ideal gas law is applied. Reforming reactions in
the anode gas channel are modeled as quasi-homogeneous gas phase reactions
using volume-related reaction rates. Methane steam reforming and water gas
shift reactions are considered. Their heat of reaction is fully transferred to
the gas phase. Diffusion in flow direction is negligible compared to convective
transport. Heat exchange between electrode and gas phase is described by a
linear function. The corresponding heat exchange coefficient also includes the
effect of thermal radiation in a linearized form.

In this paper, we present a new one-dimensional counterflow model, see
Bauer [1], which is derived from the two-dimensional crossflow model of Hei-
debrecht and Sundmacher [7, 10]. In contrast to a previous model presented
in Chudej et al. [3], this new one has differential time index νt = 1 and MOL
index νMOL = 1, which are easily derived from the two-dimensional analysis
of Chudej, Sternberg, and Pesch [4]. The resulting dynamical system consists
of twenty partial differential equations, four partial algebraic or steady-state
equations, respectively, nine coupled ordinary differential and one coupled
ordinary algebraic equation.

The spatial derivatives are approximated at grid points by forward, back-
ward, and central difference formulae depending on the mathematical struc-
ture of the differential equation, especially the transport direction. An equidis-
tant grid is used. Neumann boundary conditions are set for the heat equation
and Dirichlet boundary conditions for the transport equations. Together with
the additional coupled system of DAEs, the method of lines leads to a large
set of differential algebraic equations, where the initial values are derived from
the given initial values of the PDAE system. The procedure is called numerical
method of lines, see Schiesser [12] or Schittkowski [15].

The nonlinear model equations are implemented in the model language
PCOMP, see Schittkowski [17], under the interactive software system EASY-
FIT, see Schittkowski [15, 16]. For a further set of practical PDAE models see
Schittkowski [18].

Section 2 contains a brief summary of the technological background and
the detailed mathematical equations. In Section 3, we describe the numerical
procedures in more detail and present numerical simulation results for a load
change of the fuel cell.
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2 The Molten Carbonate Fuel Cell Model

2.1 Technological Description and Mathematical Variables

The model under investigation describes the dynamical behavior of a MCFC
in a counterflow configuration with respect to anode and cathode gas streams,
see Figure 1.
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Fig. 1. 1D counterflow model of a molten carbonate fuel cell with mathematical
variables and considered chemical reactions

In the anode channel, the feed gas, usually methane CH4, and water H2O
are converted to hydrogen H2, carbon monoxide CO, and carbon dioxide CO2,
see Figure 1 (ref1, ref2). This reforming process consumes heat, and only high
temperature fuel cells offer the opportunity for internal reforming.

(ref1) CH4 + H2O ⇀↽ CO + 3 H2 ,
(ref2) CO + H2O ⇀↽ CO2 + H2 .

Simultaneously, two electro-chemical reactions consume hydrogen and carbon
monoxide to produce electrons in the porous anode electrode. Both consume
carbonate ions, CO2−

3 , from the electrolyte layer which is located between the
anode and cathode electrodes,

(ox1) H2 + CO2−
3

⇀↽ H2O + CO2 + 2e− ,
(ox2) CO + CO2−

3
⇀↽ 2 CO2 + 2e− .

At the porous cathode electrode the reduction reaction produces new carbon-
ate ions from oxygen, O2 and carbon dioxide, CO2,

(red)
1
2
O2 + CO2 + 2e− ⇀↽ CO2−

3 .
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Hereby, the carbonate ions produced at the cathode electrode are transferred
through the electrolyte to the anode electrode. Electric current Icell and cell
voltage Ucell can be collected at the electrodes, see Figure 1.

The mathematical model uses the following mathematical variables, see
again Figure 1, where j ∈ {a, c, m, in}:

χi,j - molar fractions, i ∈ I
def= {CH4, H2O, H2, CO, CO2, O2, N2},

χj = (χi,j)i∈I ,
γj - molar flow densities,
θs - solid temperature,
θj - gas temperatures,
ΦL

a , ΦL
c - electrical potentials at anode and cathode,

Ucell - cell voltage,
Icell - cell current,
θair - temperature of air,
λair - air number,
Rback - cathode recycle switch.

The definition of molar fractions intrinsically leads to the balance
equation

∑
i∈I χi,j ≡ 1, j ∈ {a, c, m, in}, since the model equations fulfill∑

i∈I
∂χi,j

∂t ≡ 0, j ∈ {a, c}. Therefore global minimal coordinates, i.e. a suit-
able subset of the molar fractions depending on the boundary conditions, can
be applied.

The main variable is the solid temperature θs which is needed to define a
heat equation. The solution of the solid temperature should avoid high tem-
perature gradients and especially hot spots, which drastically shorten service
life and eventually damage the fuel cell irreparably.

2.2 The Dynamical Model

All variables are dimensionless. One unit of the dimensionless time corre-
sponds to 12.5 seconds. Input variable of the system is the cell current Icell(t),
which is given as a step function for modeling a load change of the fuel cell.

For performing numerical simulations, the boundary conditions for the gas
temperature θin, the molar fractions χin, and the molar flow density γin are
given in form of time dependent functions at the anode inlet (z = 0). The
quantities λair and θair are also prescribed as time dependent functions, see
Figure 1.

Heat equation in the solid:

∂θs

∂t
= λ

∂2θs

∂z2
+ f1(θs, θa, θc, χa, χc, Φ

L
a , ΦL

c , Ucell),
∂θs

∂z
|z∈{0,1} = 0.
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Advection equations in the gas streams:

∂χa

∂t
= −γaθa

∂χa

∂z
+ f2(θs, θa, χa, Φ

L
a ), χa|z=0 = χin(t),

∂χc

∂t
= +γcθc

∂χc

∂z
+ f3(θs, θc, χc, Φ

L
c , Ucell), χc|z=1 = χm(t),

∂θa

∂t
= −γaθa

∂θa

∂z
+ f4(θs, θa, χa, Φ

L
a ), θa|z=0 = θin(t)

∂θc

∂t
= +γcθc

∂θc

∂z
+ f5(θs, θc, χc, Φ

L
c , Ucell), θc|z=1 = θm(t).

Steady-state equations for molar flow densities:

0 =
∂(γaθa)

∂z
− f6(θs, θa, χa, Φ

L
a ), γa|z=0 = γin(t),

0 =
∂(γcθc)

∂z
− f7(θs, θc, χc, Φ

L
c , Ucell), γc|z=1 = γm(t).

Equations for potentials and current density:

∂ΦL
a

∂t
= [ia(θs, χa, Φ

L
a ) − i]/ca ,

∂ΦL
c

∂t
= [ia(θs, χa, Φ

L
a ) − i]/ca + [ie(ΦL

a , ΦL
c ) − i]/cc ,

i =
(
c−1
a + c−1

e + c−1
c

)−1
(

ia − Ia

ca
+

ie − Ie

ce
+

ic − Ic

cc

)
+ Icell

Integro differential algebraic equations:

dUcell

dt
=

Ia − Icell

ca
+

Ie − Icell

ce
+

Ic − Icell

cc

Ia(t) =
∫ 1

0

ia(θs, θa, χa, Φ
L
a ) dz,

Ic(t) =
∫ 1

0

ic(θs, θc, χc, Φ
L
c , Ucell) dz,

Ie(t) =
∫ 1

0

ie(ΦL
a , ΦL

c ) dz,

dχm

dt
= f8(θm, χm, θa|z=1, χa|z=1, γa|z=1, θc|z=0, χc|z=0, γc|z=0,

λair, θair, Rback),
dθm

dt
= f9(θm, θa|z=1, χa|z=1, γa|z=1, θc|z=0, χc|z=0, γc|z=0,

λair, θair, Rback),
γm = f10(θm, θa|z=1, χa|z=1, γa|z=1, θc|z=0, χc|z=0, γc|z=0,

λair, θair, Rback).
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Initial values:

θs|t=0 = θs,0(z), θa|t=0 = θa,0(z), θc|t=0 = θc,0(z), θm|t=0 = θm,0(z),
χa|t=0 = χa,0(z), χc|t=0 = χc,0(z), χm|t=0 = χm,0(z),
ΦL

a |t=0 = ΦL
a,0(z), ΦL

c |t=0 = ΦL
c,0(z), Ucell|t=0 = Ucell,0

Constraints:

γa > 0, γc > 0, θa > 0, θc > 0,

0 ≤ χi,j ≤ 1, i ∈ I, j ∈ {a, c, m, in},∑
i∈I χi,j ≡ 1, j ∈ {a, c, m, in}.

The dynamical behavior at the outlet of the reversal chamber is described by
a DAE, which couples the outlet of the anode and the inlet of the cathode
and, if the cathode recycle is switched on, with the outlet of the cathode. To
summarize, we obtain a coupled PDAE/DAE system consisting of 34 nonlinear
equations.

2.3 The Details

The missing functions are to be specified subsequently for the matter of com-
pleteness.

Right hand sides of the PDAEs:

f1 = −
∑

i=H2,CO
j=ox1,2
νi,j<0

(θa − θs)νi,jDajrj −
∑

i=CO2,O2
νi,red<0

(θc − θs)νi,redDaredrred

+qsolid − (θs − θa)Stas − (θs − θc)Stcs,

f2,i

θa
=

∑
j=ox1,2,ref1,2

(
νi,j − χi,a

∑
k∈I

νk,j

)
Dajrj ,

f4

θa
=

∑
i=H2O,CO2

j=ox1,2
νi,j>0

(θs − θa)νi,jDajrj +
∑

j=ref1,ref2

−ΔRh0
j

Dajrj

cp

+
(θs − θa)Stas

cp
,

f6 =
f4

θa
+ θa

∑
j=ox1,ox2,ref1,ref2

i∈I

νi,jDajrj ,

f3,i

θc
=

⎛
⎝νi,red − χi,c

∑
j∈I

νj,red

⎞
⎠Daredrred,



Numerical Simulation of a Molten Carbonate Fuel Cell by PDAEs 7

Table 1. Constants

cp 4.5 F 3.5
8

λ 0.666/2.5

cp,s 10000 κe 1 θu 1

Stas 80.0 ca 0.00001 λair 2.2
Stcs 120.0 ce 0.00001 χO2,air 0.21
Stm 1.0 cc 0.00001 θair 1.5

j Daj Arrj θ0
j ΔRh0

j α+
j α−

j nj

ref1 25.0 84.4 2.93 90.5
ref2 100.0 6.2 2.93 -14.5
ox1 5.0 21.6 2.93 56.0 0.5 2.0
ox2 5.0 21.6 2.93 42.0 0.5 2.0
red 0.3 31.6 2.93 156.0 2.5 0.5 2.0

i ΔCh0
i νi,ref1 νi,ref2 νi,ox1 νi,ox2 νi,red

CH4 -323.85 -1.0 0.0 0.0 0.0 0.0
H2O 0.0 -1.0 -1.0 1.0 0.0 0.0
H2 -97.62 3.0 1.0 -1.0 0.0 0.0
CO -114.22 1.0 -1.0 0.0 -1.0 0.0
CO2 0.0 0.0 1.0 1.0 2.0 -1.0
O2 0.0 0.0 0.0 0.0 0.0 -0.5
N2 0.0 0.0 0.0 0.0 0.0 0.0

f5

θc
=

Stcs
cp

(θs − θc), f7 =
f5

θc
+ θc

∑
i∈I

νi,redDaredrred,

ia = F
∑

j=ox1,ox2

njDajrj , ie = (ΦL
a − ΦL

c )κe,

ic = −F nredDaredrred,

qsolid =
∑

j=ox1,ox2

[−ΔRh0
j + nj(ΦS

a − ΦL
a )]Dajrj

+[−ΔRh0
j + nred(ΦS

c − ΦL
c )]Daredrred + (ΦL

a − ΦL
c )ie/F.

Reaction kinetics:

rref1 = e
Arrref1

(
1

θ0
ref1

− 1
θa

)
·
(

χCH4,aχH2O,a −
χ3

H2,aχCO,a

Kref1

)
,

rref2 = e
Arrref2

(
1

θ0
ref2

− 1
θa

)
·
(

χCO,aχH2O,a − χH2,aχCO2,a

Kref2

)
.

rox1 = e
Arrox1

(
1

θ0
ox1

− 1
θs

) ⎡
⎢⎣χH2,ae

α+
ox1nox1(−ΦL

a − ΔΦ0
ox1)

θs

−χH2O,aχCO2,ae

−(1 − α+
ox1)nox1(−ΦL

a − ΔΦ0
ox1)

θs

⎤
⎥⎦ ,
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rox2 = e
Arrox2

(
1

θ0
ox2

− 1
θs

) ⎡
⎢⎣χCO,ae

α+
ox2nox2(−ΦL

a − ΔΦ0
ox2)

θs

−χ2
CO2,ae

−(1 − α+
ox2)nox2(−ΦL

a − ΔΦ0
ox2)

θs

⎤
⎥⎦ .

rred = e
Arrred

(
1

θ0
red

− 1
θc

) ⎡
⎢⎣χ−2

CO2,ce

α+
red(Ucell − ΦL

c − ΔΦ0
red)

θc

−χ0.75
O2,cχ

−0.5
CO2,ce

−α−
red(Ucell − ΦL

c − ΔΦ0
red)

θc

⎤
⎥⎦ .

Kref1(θa) = exp(30.19 − 90.41/θa), Kref2(θa) = exp(−3.97 + 14.57/θa),
ΔΦ0

ox1(θs) = 28.26 − 19.84θs, ΔΦ0
ox2(θs) = 20.98− 17.86θs,

ΔΦ0
red(θs) = 78.00 − 23.06θs.

Catalytic combustor and reversal chamber:

γair = γa|z=0
λair

χO2,a|z=0
(2χCH4,a|z=0 + 0.5χCO,a|z=0 + 0.5χH2,a|z=0)

γback = Rback(t)γc|z=0

In the following equations θa, χa, γa are abbreviations for θa|z=1, χa|z=1, γa|z=1.

γb = γa

(
1 − 1

2
χH2,a − 1

2
χCO,a

)
+ γair + γback,

χCH4,b = χH2,b = χCO,b = 0,

χH2O,b =
γa

γb
(2χCH4,a + χH2O,a + χH2,a) +

γback

γb
χH2O,c|z=0,

χCO2,b =
γa

γb
(χCH4,a + χCO,a + χCO2,a) +

γback

γb
χCO2,c|z=0,

χO2,b =
γair

γb
χO2,air − γa

γb

(
2χCH4,a +

1
2
χH2,a +

1
2
χCO,a

)
+

γback

γb
χO2,c|z=0,

χN2,b =
γair

γb
(1 − χO2,air) +

γback

γb
χN2,c|z=0,

θb = θu +
γa

γb

(∑
i∈I

−Δch
0
i

cp
χi,a + θa − θu

)
+

γair

γb
(θair − θu)

+
γback

γb
(θc|z=0 − θu),
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Fig. 2. Molar fraction χCH4,a in anode
gas channel
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Fig. 3. Molar fraction χH2O,a in anode
gas channel

f8,i = γb(χi,b − θi,m)θm,

f9 = γb(θb − θm)θm − Stm
cp

(θm − θu)θm,

f10 = γb + γb
θb − θm

θm
− Stm

cp

θm − θu

θm
.

Non-zero boundary conditions:

χCH4,a = 1/3.5, χH2O,a = 2.5/3.5, θa = 3, γa = 1, Rback = 0.

Non-zero initial conditions at t = 0:

χCH4,a,0 = 1/3.5, χH2O,a,0 = 2.5/3.5, χH2O,c,0 = 0.2, χCO2,c,0 = 0.1,
χO2,c,0 = 0.1, χN2,c,0 = 0.6, θa,0 = 3, θc,0 = 3,
θm,0 = 3, θs,0 = 3.1, γa,0 = 1, γc,0 = 6,
ΦS

a,0 = 32.3, ΦS
c,0 = 32.3, Ucell,0 = 32.3, χH2O,m,0 = 0.2,

χCO2,m,0 = 0.1, χO2,m,0 = 0.1, χN2,m,0 = 0.6.

3 Numerical Methods and Results

A widely used idea is to transform partial differential equations into a system
of ordinary differential algebraic equations by discretizing the model functions
subject to the spatial variable z. This approach is known as the numerical
method of lines (MOL), see for example Schiesser [12]. We define a uniform
grid of size ng and get a discretization of the whole space interval from z = 0
to z = 1. To approximate the first and second partial derivatives of the state
variables subject to the spatial variable at a given point zk, k = 1, . . ., ng,
several different alternatives have been implemented in the code PDEFIT, see
Schittkowski [14] for more details, which is applied for the numerical tests of
this paper.
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Spatial derivatives of the heat variable θs(z, t) are approximated by a three-
point-difference formulae for first derivatives, which is recursively applied to
get second derivative approximations. The difference formulae are adapted at
the boundary to accept given function and gradient values. First derivatives
of the remaining transport variables are approximated by simple forward and
backward differences, so-called upwind formulae, where the wind direction is
known in advance. Ordinary differential and algebraic equations are added to
the discretized system without any further modification.

In case of algebraic partial or ordinary differential equations, boundary
conditions have to satisfy the algebraic equations. Consistent initial values are
computed internally proceeding from given starting values for the nonlinear
programming algorithm NLPQL of Schittkowski [13]. It is known that the
system of PDAEs possesses the index one.

The method of lines leads to a large system of differential algebraic equa-
tions, where the size depends on the number of grid points, i.e., on ng. The
system equations are integrated by the implicit code RADAU5, see Hairer and
Wanner [6]. Because of the non-continuous input variable

Icell(t) :=
{

3 , if t ≤ 1000
3.5 , if t > 1000 ,

the cell current, the right-hand side of some equations become non-continuous
subject to integration time. Thus, it is necessary to restart the integration of
the DAE at t = 1000.

Because of a complex input structure, the code PDEFIT is called from
a GUI called EASY-FIT, see Schittkowski [15, 16], to facilitate modeling,
execution, and interpretation of results. Model functions are interpreted based
on a language called PCOMP similar to Fortran, see Schittkowksi [17]. To give
an example, consider the parabolic heat equation which is implemented in the
form

* FUNCTION Ts_t

sigmaTred = (-hrred + nred *(phicS - phicL))*Dared*rred

sigmaTox = (-hrox1 + nox1*(phiaS - phiaL))*Daox1*rox1)

/ + (-hrox2 + nox2*(phiaS - phiaL))*Daox2*rox2

qsolid = sigmaTox + sigmaTred - (phicL - phiaL)/F

hsc = cpm*(-ncsCO2 - ncsO2)*(Tc - Ts)

hsa = cpm*(-nasH2 - nasCO2)*(Ta - Ts)

qcond = Ts_zz*l2/Pes

Ts_t = (qcond + hsa + hsc - qas - qcs + qsolid)/cps

Here, Ts zz denotes the second partial derivative of θs(z, t) subject to the
spatial variable z.

The MOL is applied with ng = 15 lines. For our numerical tests, the
absolute stopping tolerance of RADAU5 is ε = 10−5. The DAE is integrated
from t = 0 to t = 2000 with a break at t = 1000.

The numerical solution of some selected components is shown in Figures 2–
13 to illustrate the qualitative behavior of the state variables.
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Fig. 4. Molar fraction χH2,a in anode
gas channel
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Fig. 5. Molar fraction χCO,a in anode
gas channel
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Fig. 6. Molar fraction χCO2,a in anode
gas channel
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Fig. 7. Molar fraction χH2O,c in cath-
ode gas channel

Note that at t ≈ 800 the stationary solution for Icell = 0.3 is reached. At
t = 1000 the load change happens. At t ≈ 1800 the new stationary solution
for Icell = 0.35 is reached. The molar fraction of methane and water depicted
in Figures 2 and 3 decrease over the entire spatial width due to the methane
and water consuming endothermic reforming reaction. In accordance with the
methane behavior, hydrogen is produced in the endothermic reforming reac-
tion immediately after the anode inlet, to become subsequently consumed in
the exothermic oxidation reaction, see Figure 4. At t = 1000 the load change
takes place. More electrones are needed, therefore due to (ox1) the molar
fraction of hydrogen decreases (Fig. 4). In Figures 5 and 6, the behavior of
the molar fractions of carbone monoxide and dioxide are plotted. The molar
fraction of water increases in flow direction of the cathode gas channel, Fig-
ure 7, whereas the molar fractions of carbon dioxide and oxygen decrease, see
Figures 8 and 9.

The most important results concern the temperatures shown in Figures 10
to 11. They directly influence the reaction rates. Moreover, the solid temper-
ature of Figure 12 must be particularly observed to avoid so-called hot spots
leading to material corrosion and consequently to a reduced service life. The
temperature distribution in the anode channel coincides with the heat de-
mand and the heat release of the reactions therein, see Figure 10. Initially we
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Fig. 13. Current density ia

have the endothermic reforming reaction and thus, the temperature declines.
Subsequently, the anode gas temperature is increased again by heat exchange
with the solid, which is heated by the electro chemical reactions. Since the
cathode gas is heated up by the solid phase along the channel, the temper-
ature continuously increases, see Figure 11. Finally, the current density ia is
plotted in Figure 13. ia is almost similar to ie and ic.
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4 Conclusions

A complex mathematical model describing realistically the dynamical behav-
ior of a molten carbonate fuel cell, has been presented. The semi-discretisation
in space of the large scale partial differential-algebraic equation system to-
gether with its nonstandard boundary conditions including an Integro-DAE
system yields a large system of differential-algebraic equations by the method
of lines. The obtained numerical results correspond to the practical experi-
ences of engineers with real fuel cells of the type investigated. The model will
be used in future for optimal boundary control purposes.
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